Rijksuniversiteit Groningen Statistiek

Hertentamen

RULES FOR THE EXAM:

- The use of a normal, non-graphical calculator is permitted.
- This is a CLOSED-BOOK exam.
- At the end of the exam you can find a normal table and a chi-squared table.
- Your exam mark : $10+90 \times$ your score/ 85 .

1. Cramer-Rao: best unbiased estimators.

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be the observed data, such that

$$
X_{i} \stackrel{\text { i.i.d. }}{\sim} f_{\theta}
$$

Let $\hat{\theta}=\hat{\theta}(X)$ be an unbiased estimate of θ. Let $Y=\frac{d}{d \theta} \log f_{\theta, \text { joint }}(X)$.
(a) Show that $E Y=0$. [5 Marks]
(b) Show that $\operatorname{Cov}(\hat{\theta}, Y)=1$. [5 Marks]
(c) Use Cauchy-Schwarz to show that $V(\hat{\theta}) \geq 1 / E\left(Y^{2}\right)$. [5 Marks]
(d) Use the above to show that

$$
V(\hat{\theta}) \geq \frac{1}{n E\left(\frac{d}{d \theta} \log f_{\theta}\left(X_{1}\right)\right)^{2}}
$$

[5 Marks]
2. Linear regression. Let $\left(x_{i}, Y_{i}\right) \in \mathbb{R}^{2}$ be independent observations on n subjects, such that

$$
Y_{i} \mid x_{i} \sim N\left(x_{i} \beta, \sigma^{2}\right)
$$

where $\left(\beta, \sigma^{2}\right) \in \mathbb{R}^{2}$ are unknown coefficients.
(a) Derive the maximum likelihood estimate $\hat{\beta}$ of β. [5 Marks]
(b) Determine whether $\hat{\beta}$ is unbiased. [5 Marks]
(c) Derive the variance of $\hat{\beta}$. [5 Marks]
(d) Derive the maximum likelihood estimate of σ^{2}. [5 Marks]
3. Point estimation. Let X_{1}, \ldots, X_{n} be independently Poisson distributed random variables with parameter θ, i.e.

$$
f_{X_{i}}(x)=e^{-\theta} \frac{\theta^{x}}{x!}, \quad x=0,1,2, \ldots
$$

(a) Find a sufficient statistic $\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)$ for θ. [5 Marks]
(b) Determine the Cramer-Rao lowerbound for an unbiased estimator of θ. [5 Marks]
(c) Let $\hat{\theta}_{n}=\bar{X}$ be an estimator of θ. Show that [5 Marks]

$$
\forall \epsilon>0: \lim _{n \rightarrow \infty} P\left(\left|\hat{\theta}_{n}-\theta\right| \leq \epsilon\right)=1
$$

(d) Assume the asymptotic normality, unbiasedness and efficiency of the estimator $\hat{\theta}_{100}$. Based on this statistic, determine the usual (i.e. symmetric or minimum length) 95% confidence interval, if you know that $\sum_{i=1}^{100} x_{i}=200$. [10 Marks]
4. Optimal testing. Consider a single observation X from an exponential distribution, $X \sim \operatorname{Exp}(\mu)$, i.e. with density

$$
f_{X}(x)=\frac{e^{-x / \mu}}{\mu}, \quad x \geq 0
$$

and cumulative distribution function

$$
F_{X}(x)=1-e^{-x / \mu}, \quad x \geq 0
$$

We want to test the following hypotheses:

$$
\begin{array}{ll}
H_{0}: & \mu=1 \\
H_{1}: & \mu=3
\end{array}
$$

(a) We want to perform an optimal test with a significance level of at most 5% of the null hypothesis against the alternative. Determine the critical region. [15 Marks]
(b) What is the power of this test? [5 Marks]

Below a statistical table which may be used in the calculations.

$\nu \backslash \alpha$	0.995	0.99	0.975	0.95	0.05	0.025	0.01	0.005
1	0.000	0.000	0.001	0.004	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	11.070	12.833	15.086	16.750
10	2.156	2.558	3.247	3.940	18.307	20.483	23.209	25.188

Table 1: Values of $\chi_{\alpha, \nu}^{2}$ as found in the book: the entries in the table correspond to values of x, such that $P\left(\chi_{\nu}^{2}>x\right)=\alpha$, where χ_{ν}^{2} correspond to a chi-squared distributed variable with ν degrees of freedom.

